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LOCAL INSTABILITY OF COLUMNS WITE I-, Z-, CHANNEL, AND
RECTANGULAR-TUBE SECTIONS ot T

By Blbridge 2. Stowell and Bugene E, Lundquist
SUMMARY oo

Charts are presented for the coefficients in the for-

mulas for the critical compressive stress at which cross-

sectional distortion begins in thin-wall columns of I-, T
Z—-, channel, and rectangular-tube sections. The ensrsy
method of Timoshenko was used in the theoretical calcula-—~
tions regquired for the construction of the charts. The '
deflection equations were carefully selected to g£ive good~
accuracy. oo S

The calculation of the critical compressive stress at
stresses above the elastlic range is briefly discussed. In
order to demonstrate the use of the formulas and the charts
in engineering calculations, two illustrative problems are
included. :

INTRODUCTION : _ S

In the design of compression members for aircraft,
whether they be stiffeners in stressed~skin structures or
struts in trussed structures, the allowable stress for the
member is eqgual to the lowest strength corresvonding to
any of the possible types of failure., In references 1 and
2, all types of column failure are classed under two head-
ingsg: ) ' o

(2) Primary, or Leneral, failure.
(v) Sécondary, or local, failure.

Primary, or general, failure of.a column ig defined
as any tvpe of failure in which the cross secitionsg are
translated, rotated, or both translated and rotated dut
not distorted in their own planes (fig. 1). Secondary, or
local, failure of a column is defined as any type of fail-
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ure in which the cross sections are distorted in their own
planes but not translated or rotated (fig. 2). Consider-
ation is given in this paper only to local failure.

Cne of the factors to be considersd in a study of lo=
cal fallure is the critical compressive stress at which
the cross section begins to distort. Thls critical strcge
can usually be given in coefficient form, In two previous
papers, coefficients are given for the rectangular tube
(reference 3) and for columng of channel section and Z-
section (reference 4)., The purpose of the present paper
ig to summarize the resulta embodied in referenceos 3 and 4
and also to present coefficients that will permit the crit<
ical compressive stress to be computed for an I~section
colunn. '

The calculations required to evaluate the coofficients
Plotted in the charts were made by the energy method of
Timoshenko (reference 5). Because the calculations are
long and were made as u part of a more extended study of
local failure in thin-metal columns, they have bsen omit-
ted from this paper.

Bernard Rubensfein, formerly of the N.A.C.A. staff,
rerformed a large part of the mathematical derivations
required for the preparation of this paper.

CHARTS

The calculation ofthe criticael compressive stress &t
which crosg~gectional digstortion beging in any thin-well
column is, in reality, a problem in the duckling of thin
prlates, proper consideration being given to the interac—
tion between the adjacent plates composing the cross sec—
tion. Each of the sections considered in this paper con-—
gsists of two basic plate elements, For example, in theI-
section these slements are the flange plate and the webd
prlate,

Timoshenko gives the critical stress for a rectangu-~
lar plate under edge compression in the following form
(reference 6, p. 605):

knPEt8 _
- 8, .2 - (1)
12(1 - p )b

_fcr
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where

E is tension—~compression modulus of elasticlty
for the material. '

B, Poisson's ratio for the material.
t, thickness of the plate.
b, - width of the plate.

ky &a nondimensional coefficient dependent wupon
the conditions of edge support and the di-
mensions of the plate.

This equation can be used to calculate the critical
compressive stress at which cross—sectional distortion
beging in columns with the sections considered in this pa-~
per. If. t+ and P are the thickness and the half-wid®h
of the flange, respectively, for an I-section, then the
restraining effect of the web, whether positive, nesgative,
or zero, is included in the coefficient k, On the other
hand, if t and b are the thickness and the width of
the web, a different set of values for k 1is obtained.

It is therefore necessary to decide whether % and b in
the equation for the critical stress shall refer tqQ the
flange plate or the web plate. Each form has advantages

in certain cases. In this report, both forms will be

given, either of which may be used to calculate the critical
gtress. '

As applied to I-gsection columns, thesc two forms are:

a 2 o _ .
S il S (@)
°F 12(1 - p®)OF -
and -
ko2 Bt B e
'W W. .
fop = .(3)

=]
12(1 ~ w )by

In these formulas, either of which may be used, = =

tp and %y are the thicknesses of the flange and _the
wed plates, resvecitivelyry.

= =
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kp and ky, nondlmensional coefficients dependent on
the shape of the crose section. (See
figs. 3 and 4.) _

bp is the half-width of the flange. (See
gketches on figs. 3 and 4.)

bW' width of the web.

The values of kp and kg, as calculated by the previ-

ously mentloned energy method, are listed in tadles I and —
II. ‘ThHése calculated values were plotted asainst Dby/bp

and byp/by, respectively, to odtain the curves shown in
figures 3 and 4.

Equations (2) and (3) are given on figures 3 and 4,

respectively, with f,, replaced by fop/M. The nondi-

monsional coefficient N allowse for the effoct of stress
beyond the elastic range and is discussed in a later sec-— .
tion.

The relation betwsen kp and ky for a given I~
section column is sometimes of interest; it 1s obtalned
by equating the right-hand sides of equations (2) and (2},
which gives )

'D-' ‘IE + .28 - :
ko = (2EY (ZHY g - . (4)
£ \'bw/l \'bF/ W - . (

Equations (2), (%), and (4) also anply to columng of
channel-section and Z-section, for which the values of s
kp and kg are glven in figures 5 and 6. It is impnor-
tant to note that, in these cases, bF refers to the to-
tal width of the flange. The values of kF and ky used

to draw the curves in fizures 5 and & are listed in tables
III and IV, respectively.

For the case of the rectangular tube, let the cross-—
sectional dimensions of the tube be as shown in the sketch
on figure 7. It will alweys be poasible tuv select the

sides of width b and h so that £ 1. With this R

chelce of sides, the critical compressive stress for the
tube is
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-l e
f_‘cr = -IE) ] (5) -
12(L - ¥ )h . _

in whiech %k may be read from figure 7. The values of k
used to draw these curves are listed in tabdble V.

The k-coefficients Ziven herein apply to columans in
which the material is both elastic and isotropice. Stecl,
aluminum alloys, and other metallic naterigsls wusually sabt-
isfy these conditions provided that the material is not
stressecd beyond the elastic range. Wien a matorial is
stressed beyond the proportional limit in one direction,
it is no longer elastic and is probadbly no longer isotrop-
ic. In a later part of the papor a method is prosented
for ealculating the eritical stress when the columns are
loaded beyond the proportional limit.

DEFLECTION EQUATIORS . .= —
The Plate elements that make.up the sides of the col-

umns treated fall into two classes, namely:$

_ (a) Plates restrained along both edges, as the web
of & channel or as the sides of the rectangular itubse.

(b} Plates restrained along only one edge, as one

fianqe of the channel section or, the halF—flanDe of the
I-sectlon.

() The deflection equation assumed for plates of .class ~
a)l 1is

= g - ; Y | gyp 27X (5
w = LéA N (l + B sin 3 } sin =7 (8)

and, for class (b),

5 4 3
— c Z .:_D.__ E : 52 .'Y.
~9.778 (l’)a]} in 21X 1 (?)
. b S n L - .

where
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w is deflection normal to nlate. -
A, B, ¢, and D, ardbitrary deflection amplitudes.

b coordinate acrocss plate, measured from one ecdgeo,

_b, width of member.

n, +number of half-waves in length L.

X, coordinate in direction of lsngth L.

L, length of membér.

For the channel, the Z-~, gnd the I-sections, the val-~
ves of € and D for the flanges may be expressed in
terms of A and B for the web througzh the conditions
that the corner angles are maintalned during buckling and
that the moments at each corner are in equilidbrium. The
values of B/A and IL/n are thon adjusted to make the -
critical stress a minimum. The same consliderations apply
to the rectangular tube, excent that two equations of the
form of (5) are used, one for each vair of walls.

The foregoing deflection equations used in the onorsy
solution were carefully selocted. 4 comparison of the ox~
act values of k with the values of k for the rectangu-
lar tube as given by the enersgyv method reveals that the en~
ergy values are less than 1 percent 1in error, (Seeo refer-—
ence 3.) The values of Xk for the other sections are also
believed to be correct to the same order of maguitudo. .
This belief is Justified because, in the limiting cases
" for which exact solutions are available, the precision is
within these limite. In additions other problems in which
these deflection egunations have been used Zavc a procision
better than 1 percent.

DISCUSSION OF CHARTS

Figures 3 to 7 give .the computed values of the k-coef-
ficlents plotted azainst by/dp, bp/by, . or b/h. When

the webs are narrow in comparisgson with the flanges, the in-
s8tavility occurs first in the flanzges. As bw/bF in- "

creases, & polnt is reached where the webs become the
weaker part of the cross section. For example, this point



N.A.C.A. Technical Note No. 743 7

is clearly discernible in figure 3 where two of the curves
break sharply at certain values of by/dp. -

CRITICAL STRESS FOR LOADING BEYOND THE PROPORTIONAL LIMIT

In the elastic range, the critical compressive stress
for an ordinary column that% fails by bending is given by
the EFuler formula. Beyond the proportional limit marking
the upper end of the elastic range, the reduced glope of
the stress—strain curve requlres'that an effective modulus
E De substituted for Young's modulus B in the Euler
formula. The value of ¥ is sometimes written ’

E = TE . (8)

The value of the nondimensional coefficient T wvaries
with stress. By the use of the double-modilus theory of
column action, theoretical values of T can be obtained
from the compressive stress~strain curve for the material
(reference 6, p. 572, and refersnces 7 and 8). Tests show

that, in practlce theoretﬂcal values of T, derived on
the assumptlon that no deflection occurs until the criti-—
cal load is reached, are too large. It is therefore best
for practical use, to obtain the value of T from the ac—
cepted column curve for the material, as will be shown ~— =
later. The values of T thus obtained take into account
the effect of imperfections that cause deflection from the
beginning of loading as well as other factors that may
khave a bearing on the strength.

For cross—sectional distortion of a thin-wall column,
the critical compressive stress is given by the baslc equa-—

tion (1). Beyond the proportional limit, the critical com="

presslve stress is g£iven by this. equatlon with an e:fec~
tive modulus MNE substituted for E, or:

k’lTaEta (9)
.a 2 [,
12(1 - )b '

cr

In the absence of adequate test data, the value of the non-
dimensional coefficient M cannot be definitely estab-
lished. It is reasonable to suppose, however, that 0

and T are related in some way.

Various equations relating TN and 7T have been sug-
gested. The discussion of reference 3 points out that,
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when T 1s considered to be a function of T, the egua-
tion for M will depend upon the manner of svaluation of
T. If T 1is determined from the stress—strain curve on
the assumptlon that no deflection takes place until the
critical load is reached, the effect of deflsctions from
the beginning of loading must be separately considered.

If T 1g determined, however, from the accepied column
curve for the material in the manner outlined in the illus-
trative problems of reference 3, part, if not all, of this
effect is automatically considered.

A careful study of the theory and of such experimen-—
tal data asg are available indicates that = conservative
assumption is

ﬂ - I;ijiiéi (10)

provided that T is evalunated by use of the accepted col~
umn curve for the materinl. This equation will probadly
need to be modified &s more test data become available.

Now T 1g itself a function of the stress (...
‘Hence, N is a function of forp- Consequently, equation
(9) cannot be solved directly for f4p. If the equation
is divided by 17, however, then 'fcr/n ig given directly
by the geometrical dimensions of the cross section.

Thus, for the I-section column, equatlons (2) and
(%) become

Top kpm® Bt p®
= Y : (11)
n 12(1l.~ p )by -
and
£ KT 2Bt o '
cr = W W . (12)

=4
M 12(1 - )bw'
For the columns of channel and Z-section, equations (11)
and (12) also hold, except that by is the entire width
of the flanee. i

For the rectangular tﬁbe
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f km Et, .
n 12(1 - p )b :

"The values of the k-coefficients are read as usugl
from figures 3 to 7. Thus, fcr/ﬂ is determined for the
cross soaction under consideration from eguation (11), (12),
or (13), The value of fa is then determined from

cr/n' ’ )
RELATION BETWEEN fo, AND f,./M

Assume that the value of T is given by equation (10),.
As stated previously, T and hence T depend upon the
critical stress. Althousgh theoretically the values of T
and hence of T can be obtained from the stress—sitrain
curve, they are best obtained from the accepted column
curve for the material,

The equations that show the variation of T with
stress for 24ST aluminum alloy that just meets the require-
ments of Navy Department Specification 46A9a (tensile yield
strength, 42,000 pounds per square inch) are Ziven in part
I of reference 9. 1In ordsr to show how similar equations
can be derived for any other material, equations will be
derived from the column 1ormulas given in reference 9 for
24ST aluminum alloy.

The accepted column formulas for 24ST aluminum alloy
are given by equations (8) and (9) of reference 9. These
equations are:

For. 41,200 > f_. > 19,600 1b./sq. in.,

f

. . T - ; .
or = 43,700 (l - 0.00752 5> (14)

For f,.< 19,600 1b./sq. in.,

05 00000 - ST . ;

For the sams member, the critical stress given by the
accepted column curve must equal the critical stress given
by the Buler formula with an effective modulus E = TE
substituted for Young's modulus E, or
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¢ 105200000
£ip = —ovm = T ooom (16)
er  (1/p) (L/p)?

If equations (14) and (15) are solved for L/p, the
following expressionsg are c¢btained:

For 41,200 > f,, > 19,600 1b./sq. in,,

43700 - fon
= . 17
L/p 758.6 (17)
For f,,. < 19,600 1b%./sq. in.
105200000 = (18)

—L- - D e —
P fer

Substitution of these values of L/p in eguation (16)
givesg:

For 41,200 > f,,. > 19,600 1b./sq. in.,

a

£ £
= ——2L (1 opa - =SZ ) (19)
8925 25700

For fgr < 19,600 1b./sq. in., - -

By the use of equations (19) and (20), the value of
T can be established for assumed values of Lope The
values of T obtained can then be sudbstituted in equation
(10) to ovbain the corresponding values of 7. If the as-
sumed values of f,, are divided by the corresponding
values of T, a curve of fg, =~zainst fcr/n can be
plotted. In fisure 8, several sgsuch curves are givcn for
24ST aluminum alloy for different assumed relations be-
tween T and T. When the valuo of fcr/ﬁ has been ob-

tained by use of eqguation (11), (12), or (13), the valuo
of f,y 18 read from one of the curves of figure 8,

The uwltimate strength of a thin-wall column will, in
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general, be higher than the load at which cross—~sectional
distortlon begins. At stresses approaching the yield
point of the material, the critical load and the ultimate
load approach the same wvalue. XNo attempt has been made in
this paver to discuss the ultimate sftrength of a thin-wall
column; the solution for the critical load logically pre-
cedes the solution for the unultimate load.

ILLUSTRATIVE PROBLEMS -

It is desired %0 calculats the critical compressive
stress at which c¢ross-sectional distortion begins in two
I-section columns constructed of 24ST aluminum alloy:

Column A . Solumn B
bp = 1 in. . pp = 2 in.
by = 2 in. by = 4 in.
tp = 0.1 in. ty = 0.2 in,
ty = O.1 in. ty = 0.1 in.

Solution for Column A&

b 2
_u = - = 2 e
bp 1
% 0.1
__E X e = 1
tp 0.1

From figZure 3, kg = 0.662

For this material, T = 10.66 x 10%® 1b. per sq. in.

and = 0.,3.

From equation (11),

a
for _ 0.682 x w2 x 10.66 x 10° x (0.1)

, = 63,800 1b./sq. in.
n 12(1 - 0.5°) x (1)° ) )

From the'solid.curve of figure 8, fcr = 33,000 lb./sq. in.
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Sclution for Column B

b 2
_F o2 0.5
'bw 4 -
tw _ 8.1 o5
tp 6.2 ' :
From figure 4, ky = 6.82
From this material, E = 10.68 x 10° 1b. per sq. in.
and o= 0.3 ’ -

From equation (12),

. B
_ % X 10.66 x 10° x (0.1)

n 12(1 - 0.3%) x (4)2

£ 6.82 x
cr m 41,100 1b./sq. in.

From the solid curve of figure 8, fgn 28,800 1b./sq. in.

CONCLUSIONS

l. The critical comvressive stress at which cross-
sectional distortion begins in a thin-wall column of chan-
nel, Z-~, or I-section is given by either of the following
equationg:

2 a
. - ke Etp
cr - a2 2
12(1.~ w )by
or
_ kwwaEtwg
fcr -

a2 a
12(1L - p )by

where E and W are Young's modulws and Poisson's ratio
for the material, respectively.

bp is the half-width of the flange for the
I-gection, or the total width of the
flange for the channel and Z-sections.
(See sketches on figs. 3 to 6.)

‘li
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i,
by, width of the wed. ]
tF and tw are the thicknesses of the flange and
the wed plates, respectiﬁglv -7
kF and ky, nondimensional coefficients read from
fizgures 3 to 6.
T is a nondimensional factor taken so that
NE sgives the effective modulus of Sl e
flange and web at stresses beyond the
elastic ransge.
For the rectansular tudbe,
kmEEty, 2 - - - -
f =
cYT = E-) -—
12(1 - p )h
-~ where

. h and ty, are the width and thickness, respective-
) ly, of the long side of the rectangu—
lar-tube gsection.

k, nondimensional coe*flcient read from
fizure 7. .

2e At stresses beyond the elastic range, the value
of the effective modulus MNE for local buckling 6f thin-
wall columns will depend upon tests. In the absence of
such tests, however, 1t is reasonable to assume that T
ls & function of T, where TE is the effective modulus’
of an .ordinary column at stresses beyond the elastic range.
A careful study of theory .and of such experimental data as
are avalilable indicates that i1t is safe to assume

provided that T is evaluated by use of the accepted col-
umn curve for the material. o

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 13, 1939.
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Calculated Minimum Vaslues of

TABLE I
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kp for I-Sections by the Energy Solution
(b = 0.3)
by | kg

b
% & 0.5 1 2
0 1,288 1,288 1.288

.20 ~ 1.019 -

.40 623 ~ 1.193

«80 - . 8562 =

» 80 .567 ~ 1,147
1,00 - .783 -
1.20 .536 - 1.127 -
1.40 - 735 -
1.60 «508 -~ 1.118
1070 .500 — b
1,80 L4911 .688 -
1.85 .486 - -
1.80 473 - -
2,00 427 .062 1.113
2.40 .295 597 1,110
2.80 .216 .520 1,105
3.20 «165 . 440 1.093
3.40 - - 1,062
3.80 130 . 367 1.015
3.80 - - .955
4,00 105 » 306 .893
5.00 067 .200 «823
6,67 D37 «.112 364

15
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TABLE 11

Technleczl Note No.

alculated Minimum Values of

kyw 'for I-Sections by the Energy Solution

Lpu = q.ﬁ) o
NG = I
g_E { 0.5 1 2
W
-~
0 4,00 4,00 4,00
<050 6.05 4,49 4,06
+100 6 .46 4,82 4,09
.150 6.61 4,98 4,04
200 5.68 5,01 3.89
« 250 6.72 4,89 3.57
. 278 6.73 4.75 3,29
.313 6.75" 4,50 2.80
+ 357 6.77 4,08 2.17
417 .79 3.44 1.60
«500 6.82 2.65 l.11
.5286 6.84 - -
.5566 6.37 2.23 -
.588 5.78 - - .
. 625 5,20 — .715
1714 - lo4:4.' -~ -
. 833 3.09 - .406
1.000 - <784 -
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Calculated Minimum Values of
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TABLE III

kg .

for Channel and Z-~Sections by the Energy Solution

(b = 0.3)
ty kp
'b .
2% Nr 0.5 1 2
by
0 1.288 1.288 1.288
. 200 - 1,111 -
400 .695 - 1.234
.600 nd -962 hnd -
+ 800 621 '- 1.204
1,00 - .892. -
1.20 .576 . - 1.193
1,40 - .836 -
1,60 .528 - 1,188
1075 .506 e -
1,80 .499 770 —
1.82 .493 - -
1.90 .455 - -
2,00 .410 . 730 1,187
2,20 .338 - -
2,40 .284 . .629 1,188
2.80 .208 .521 1.190
3.20 .159 423 1.192
5.4:0 - - 1.178
2.60 .125 . 345 1.103
3,80 - - 1,021
4,00 .101 .284 . 340
4,40 .083 .236 .799 .
4,80 - .199 .681
5.20 . 059 .170 .58%7
5.60 - .146 .508
6.00 . 044 127 A4l

17
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TABRLE 1V
Calculated Minimum Values of ky

for Channel and Z-Sections by the Energy Solution

(p = 0.3)
v g
br \ir 0.5 1 2
by
0 4.00 4.00 4,00
. 050 5.46 4.25 4.03
1100 6.02. 4.45 4.04
1130 6.19 - -
L1687 6,31 4.58 4.00
179 - 4.59 %.98
.192 6.38 £.50 3.97
.208 - 4.59 2.92
227 6.43 4.58 3. 86
.250 B .46 4.54 3.76
.263 - - 2.68
. 278 6.49 4,47 3.57
.294 . - .40
.313 6.51 4.33 .05
. 357 6.5% 4.08 .33
417 6.54 3,62 1.71
455 6.55 - -
500 6.56 2,92 1.19
.528 6.58 - -
.548 6.57 - -
.556 6.47 2.50 -
571 6.20 - -
. 625 5.41 - 761
714 - 1.64 -
« 833 3.3%2 - .429
1,000 - .892 -
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.y
TABLE V
Calculated Minimum Values of k
for Rectangular Tube by the Enersy Solution
(b = 0.3)
N‘b k
> tn 0.5 1 2
h ‘\\\

0 7.01 7.01 7.01

<050 5.13 8.45 -

.075 4,88 - -
«100 4,72 6,.0¢ 6.85

.125 4,82 - -
.200 4,43 5.68 6.73
<300 4.31 5.45 6.65
- .400 4,22 5.29 6.61
.500 4,11 5.16 6.59

.525 4,08 - -

~* «5350 4,04 - -

.575 4,00 - -

5920 3.97 - -
.600 3,95 5.03 6.57

.810 3.92 - -

-625 3.89 - b

.850 3.81 - -

.5675 2,64 — -
. 700 2.38 4,87 6,57
800 2.58 4,66 6.57
« 900 2.03 4 .37 6.57
1.000 1,64 4,00 6.58

19
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